Methane production from oleate: assessing the bioaugmentation potential of Syntrophomonas zehnderi.

نویسندگان

  • A J Cavaleiro
  • D Z Sousa
  • M M Alves
چکیده

The potential for improving long-chain fatty acids (LCFA) conversion to methane was evaluated by bioaugmenting a non-acclimated anaerobic granular sludge with Syntrophomonas zehnderi. Batch bioaugmentation assays were performed with and without the solid microcarrier sepiolite, using 1 mM oleate as sole carbon and energy source. When S. zehnderi was added to the anaerobic sludge methane production from oleate was faster. High methane yields, i.e. 89 ± 5% and 72 ± 1%, were observed in bioaugmented assays in the absence and presence of sepiolite, respectively. Sepiolite stimulated a faster methane production from oleate and prevented the accumulation of acetate. Acetoclastic activity was affected by oleate in the absence of sepiolite, where methane production rate was 26% lower than in assays with microcarrier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioaugmentation of Anaerobic Sludge with Syntrophomonas zehnderi as a Prospect for Enhanced Methane Production from Oleate

Bioaugmentation of anaerobic sludge with long-chain fatty acids (LCFA)-degrading bacteria can be a feasible strategy to enhance methane production from LCFA. This hypothesis was studied in batch assays with Syntrophomonas zehnderi as bioaugmenting strain. This bacterium is able to degrade a wide range of saturated and unsaturated LCFA, and its presence has been reported in several oleate-fed bi...

متن کامل

Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum.

An anaerobic, mesophilic, syntrophic fatty-acid-oxidizing bacterium, designated strain OL-4(T), was isolated as a co-culture with Methanobacterium formicicum DSM 1535(NT) from an anaerobic expanded granular sludge bed reactor used to treat an oleate-based effluent. Strain OL-4(T) degraded oleate, a mono-unsaturated fatty acid, and straight-chain fatty acids C(4 : 0)-C(18 : 0) in syntrophic asso...

متن کامل

Long-term acclimation of anaerobic sludges for high-rate methanogenesis from LCFA

Inhibition of methanogens by long chain fatty acids (LCFA) and the low numbers of LCFAdegrading bacteria are limitations to exploit biogas production from fat-rich wastewaters. Generally reactors fail due to excessive LCFA accumulation onto the sludge. Here, longterm acclimation and bioaugmentation with a LCFA-degrading coculture were hypothesized as strategies to enhance methanogenic conversio...

متن کامل

Anaerobic microbial LCFA degradation in bioreactors.

This paper reviews recent results obtained on long-chain fatty acids (LCFA) anaerobic degradation. Two LCFA were used as model substrates: oleate, a mono-unsaturated LCFA, and palmitate, a saturated LCFA, both abundant in LCFA-rich wastewaters. 16S rRNA gene analysis of sludge samples submitted to continuous oleate- and palmitate-feeding followed by batch degradation of the accumulated LCFA dem...

متن کامل

Effects of bioaugmentation by an anaerobic lipolytic bacterium on anaerobic digestion of lipid-rich waste

The effect of bioaugmentation with an anaerobic lipolytic bacterial strain on the anaerobic digestion of restaurant lipid-rich waste was studied in batch experiments with a model waste containing 10% lipids (triolein) under two sets of experimental conditions: (A) methanogenic conditions, and (B) initially acidogenic conditions in the presence of only the lipolytic strain biomass (4 days), foll...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Water research

دوره 44 17  شماره 

صفحات  -

تاریخ انتشار 2010